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Depletion potential near curved surfaces
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We examine the depletion potential and force of a hard-sphere fluid on a single big hard sphere, located
inside or outside of a hard spherical cavity, by Monte Carlo simulations to the hard-sphere fluid. The depletion
potential is determined by the acceptance ratio method, while the force on the big sphere is obtained by two
methods: numerical differentiation of the depletion potential and integration of the contact density of the fluid
at the surface of the big sphere. The results are in excellent agreement with those obtained by density func-
tional theory presented by Ro#t al.
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I. INTRODUCTION The volume fraction of the fluid isys [defined as 7

=N%7R3/(V—47R3/3), whereV is the total volume of the

Depletion forces in colloidal suspensions and in polymer-simu|ating cell. The radius of the spherical cavityRs , and
colloid systems are of long-standing and continuing interesthe big hard sphere can be inside or outside of the cavity. By
[1-16 in the last few decades. Asakura and Oos&#@)  simulating directly the free energy differences of systems
[1] first described this depletion mechanism, suggesting thagith different separations between the big sphere and the
it would drive phase separation in colloid-polymer mixtures.spherical surface, we extract the depletion potential and
Using excluded volume arguments they calculated the deplgorce. As a comparison, the depletion force is also calculated
tion force between two hard spheres of radRysn a fluid of  py the use of the exact expression[afi]; we refer to this
small hard spheres of radit , and showed that the force is method as the density integration meth@iM). The ARM
attractive for all separations less thaRg2and is zero for does not need the knowledge of density profiles of the fluid,
larger separations. In the past years, a lot of experimentahile the calculation by using the exact expression, the DIM,
works were available on the subject by scattering methodgo. As is well known, in a system that has a lack of symme-
[6—8]. There were also direct methods used to determine thgy, accurate determination of the density profile needs to
depletion potential between a colloidal hard sphere and generate a large number of configurations, which is very time
hard wall, between a hard sphere and a spherical surfagnsuming. We will see that the ARM is superior compared
induced by smaller colloidal particl¢9,10], and by nonad- to the DIM in the calculation of both the depletion potential
sorbing polymer$8]. In particular, Dinsmoret al.[10] have  and the depletion force.
employed video microscopy to probe the behavior of a mi-  The paper is organized as follows. In Sec. Il we derive the
croscopic sphere trapped inside of a rigid, phospholipidexpression of the depletion potential and force of the system
vesicle. Theoretical investigations beyond the simple fredrom the AO approximation. The implementation of the
volume argument are density functional thedDFT) calcu- ~ ARM in this system is given in Sec. Ill. In Sec. IV we give
lations by Gdzelmannet al. [11], the virial expansion by the details of the Monte CarléMC) simulation, together
Mao et al. [12], and simulation§13,14]. Attard [2] has de-  with results and discussions.
rived an exact expression for the depletion force in terms of
the equilibrium number density profile of the fluid from the Il. DEPLETION POTENTIAL AND FORCE
density functional theory. By using the exact force expres- IN AO APPROXIMATION
sion Gdzelmannet al. [11] have constructed a series of ap-
proximate expressions of the depletion force: the AO ap- The model system under research is a big hard sphere of
proximation, the Derjaguin approximation, and the wedgegadiusRy, in a fluid of small hard-sphere particles of radius
approximation with increasing complexity and accuracy. InRs inside or outside of a rigid spherical cavity of radifs
Ref.[4] a very accurate new approach based on the densifyas shown in Fig. (8) and Fig. 1b)]. The force on the big
functional theory developed by Rosenf¢®] for calculating  sphere exerted by the fluid in the presence of rigid spherical
the depletion potential in a hard-sphere mixture is presentegavity, the so-called depletion force, can be expressétilas
by Gazelmannet al. They obtained some perfect theoretical
results of the depletion potential on a single big hard sphere _ "
inside or outside of a hard spherical ca\igj. A= LdAp(R)n, D

Simulations of the depletion potential and force between
(1) a macrosphere and a hard wall, @)l a pair of macro- whereB=(kgT) 1. The integration is over the surfaGof
spheres for binary hard-sphere mixtures have was performealsphere of radiuR,+ Rs spanned from the center of the big
by Dickman[14]. We shall study here, by means of the sphere;ii is the unit normal vector pointing outwards from
Monte Carlo simulation method together with the acceptancéhe big sphere. The force depends on the distribution of the
ratio method(ARM) introduced by Benneftl7], the deple- equilibrium contact number density of the fluid, which is
tion potential and force between a big hard sphere of radiufixed by the external potential due to the cavity and the big
Ry, and the spherical cavity in a system of hard-sphere fluidhard sphere itself. In the absence of the cavity or other ob-
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(b)

FIG. 1. Schematic drawing of the two kinds of systems studied in this paper. A fixed hard sphere wittRjadins fluid of smaller
hard spheres with radilR;, located(a) inside or(b) outside of a spherical cavity of radii&s . Thez axis is the axis connecting the centers
of cavity and the big spheteis the distance between the vesicle wall and the big sphere surface alangxiked, is the value of the polar
angle beyond which is the excluded volurfimtted areagsof small spheres. For reasons of clarity the schematic drawings correspond to
Rp,=1.28R; andR.=5R;.

stacles, this density profile is symmetric around the bigsmall sphere fluid. According to simple geometries, the co-
sphere so that this force vanishes. The reduction of symmetrsine value of the anglé. (see Fig. lis
by the presence of the rigid cavity gives rise to a nonzero

force f,(h), wherez is along theh direction. However, the :(Rb+Rs)2+(Rc_h_Rb)z_(Rc_ R)?

system has rotational symmetry around #teis, so that the cosf; 2(Rp+Rg)(R;—h—Ry) ®
density profile has the same symmetry and @9.leads to
[14] for the case of the big sphere inside the cavity, and
NE (Re+h+Rp)?+(Rp+Rg)*— (Rg+Ry)?
BfA(h)=—2m(Ry+Ry) fo d@sin6dcosbp(6), (2) COSfc=— 3R+ N+ Ry)(Re+ R ©

whered is the polar angle with respect to taexis (see Fig. for the case of _the big sphere outside the cavity. Inserting Eq.
1), andp(6) is the contact number density of the fluid on the (%) and Eq.(6) into Eq. (4), we have
surface of the fixed big sphere. It is obvious that in this case

CSs _ _
f,=f,=0. Equation(2) can be rewritten afl1] BiAc(h)==2mpsO(2Rs—h)

] (Ro—h/2)(Ry— Ry~ Ry—h/2) (R 1h)
ﬂfz(h)z—ZW(Rb+Rs)2f dosing(—cos6)Ap(6). % (Ro—R,—h)? X Rot 3
®) X(2Rs—h) (7)

HereAp(6)=p(6)—p(7— 0) is the difference between the and
contact densities around the leftd) and the righto(7— 6) s
hemisphere of the big sphere. Bfad(h)=—=2mps®(2Rs—h)

The AO approximation, proposed by Asakura and Oosawa

[1], assumes that the density profile takes the bulk value in (Re+ W2)(Re+ Rt Iijrh/Z) X ( R,+ lh

the part where the small spheres can be accommodated, and (Re+Ryp+h) 2

is zero in the part where the small spheres cannot enter. This X (2R~ h) )
S 1

approximation is only justified for very low bulk densities of

be written as the limit of R,—, the depletion force, Eq€7) and (8),
. becomes
ﬁfgg(h)=—2w(Rb+Rs)2f désin6(—cosh)Ap(6), 1
gC
7 Bfac(h)=—2mp®(2Rs—h)| Ry+ 5h| (2R~ h),

9
where 6, is the value ofd when the small sphere just con- ®
tacts with both the big sphere and the cavity surfacewhich is the depletion force on the big sphere in the presence
Ap(0)=—ps, and pg is the bulk number density of the of a planar hard wall located a distancepart.
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By integrating the depletion force, the associated deplewherer represents the coordinates of all particles in the sys-
tion potential on a big sphere inside and outside of a cavitgem and the subscripts 0 and 1 denote an average with re-
(cavity sphere modgis, respectively, spect to the Boltzmann factor ofy and Vq, respectively.

The weight functionW is arbitrary and may be chosen in

cs 1 such a way that the calculation effort is reduced. Following
BVao=—3mpsO(2Rs—h) [17], we choose it as
(3R, + Rs+ h)R.— (RyRs+ Rsh+ Ryh+ h?/4) Qo Q. -1
~ R.—h-R, Wer| Cexp(— BV + Toexp— Vo)L (19
_h)2
X (2Rs=h) (10 wheren,; andng are two arbitrary numbers to be determined
and later. Equation(14) then reduces to

-1
14 2 n—:exr{—/a(vo—vl)]} >
0

,BVCS=—E77 ®(2Rs—h) <{
AO Ps S Q1 NoQq Qo N

3

(3Ry+Re+h)Re+ (RyRs+ R+ Ryh + h2/4) Qo MQo < 14+ Eexn[—ﬁ(vl—vo)]r> '
~ R.+h+R, Q1 Mo ' e
X (2Rg—h)Z. (12)
_ _ By assuming Q;/n;)(ng/Q,)=e"°, we obtain
Moreover, the potential for a big sphere and a hard planar
wall (wall sphere modelis Q,  (f[B(V,—Vy)+Clh
— eC (17)

1 Q (f(=B(Vi—Vo)-C));
BVAS=— = mps®(2Rs—h)(2Rs—h)?(3R,+ Rs+h).

3
(12) Qi (f[B(Vi—Vg)+Clo

In=—=In +C; 18
o Qo ([~ AV~ Vo) Cl); 19
The potential zero is set so far away at the place where two

obstacles are separated that the hard-sphere fluid density hgsre f(x) =[1+exp&)]  is the Fermi function. Since;,
tween them tends to bulk density for the wall sphere mOdelandno are arbitrary, this equation is valid for any constant

and at the center of the cavity where the center of the bigBy choosing an appropriat, the calculation oA\F can be
sphere is located for the cavity sphere model, respectively. qyite conveniently performed. For the hard sphere potential,
we may choos€ =0 and get

IIl. SIMULATION OF THE DEPLETION POTENTIAL
Q1 (f[B(V1—=Vo)])o Nio

Consider two systems of hard-sphere fluid in an external BAF=—In~t=—In — 0
potential characterized by a rigid cavity and a big hard Qo (f[=B(V1—Vo) )1 No1’
sphere inside or outside of the hard cavity, with different (19
separations between the big hard sphere and the hard spheri-

cal cavity surface. Denoting the potential of the two systemsvhereN, is the number of samples drawn out from tNe
by Vo andV,, the partition function of the systems beidg  Simulated samples, which are generated with the poteviial

andQ,, then the free energy difference between these twavhereV, is not infinite;Ng; is the number of samples drawn

systems is given by out from N simulated samples, which are generated with po-
tential V; whereV, is not infinite.
Q, The procedure outlined above is used to calculate the free
BAF=pBF,—BFo= _an_o' (13)  energy difference between two states of the system, the two

states are regarded as two systems, 0 and 1, in the ARM

By introducing a weight functio®V(r), we can transform language, and characterized, respectively, by the separations

the ratio of partition functions of the two systems[43] between the big sphere and the cavity surfégeandh; . It
is clear that whem\h=|h;—hg| is large, the numbersl,,

and Ny; can be very small compared ¢, so that an ex-
f drw(r)yexd — B(V1+ V)] tremely large number of configurations have to be generated
% = % to reduce the statistical errors Nfig andNg;. On the other

Qo Qo J hand, if Ah is very small, the two systems are nearly the
drw(rjexd = B(Vy+Vo)] same and the free energy difference between them can be
very small, and therefore it is difficult to extract it from the
_ (WeXD(—,BVﬁ)o’ (14  Subtraction of the two logarithms dfi;o and No;. In our
(Wexp(—BVo))1 study the value ofAh is chosen to assure that bdth,; and
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N,, are large andN;o— Ng;| is not too small. The choice of
Ah depends on the volume fractions, which becomes
smaller wheny; is larger. 0.59 |
Apart from a constant which can be specified arbitrarily in

this study, the depletion potentidlon the big hard sphere is

just the free energ¥ of the system. The depletion force on I
the big sphere can be calculated by numerical differentiation i
of the depletion potential in the ARM. 057

IV. RESULTS AND DISCUSSION

Before presenting the results of our calculation, we first
specify the system in more detail. The system is a fluid of 0.55 0
unit-diameter (R;=1) hard spheres, inside or outside of a
hard spherical cavity with radiu®., the centers of the
spheres are restricted inside of a sphere of raBjusRg in
the first case, and outside of the sphere of ratis$ R in
the second case. A single big hard sphere of raBiysvith
its center at a distancB,—R,—h or R;+R,+h is apart

from the cavity center@ distanceR,+h from the cavity a0 potential, i.e., obtaining the force through numerical

surfacg, respectively, in the two cases. The force on the bigjiterentiation as outlined in the preceding section. The sec-
sphere is a function of the radius ratiBg/Rs, R./Rs and 54 is the DIM by using Eq(3). Both methods have their
the bulk volume fractiory; of the hard-sphere fluid. In the - oo rresponding merits and disadvantages. In the differential
case of the big sphere inside of the cavity, and the cavity Sizg,eiho(, the calculated free energy from simulation contains
is not large, we did a simulation of the whole system. Wegagistical errors, while the numerical differentiation always
refer to this case asxactsimulation hereafter. HOwever, g the effect of enlarging the errors. To improve our results,
when the radius of the cavity is large enough or the bigie calculated data are first smoothed by the spline regression
sphere is located outside of the cavity, only a portion of thénethod and then differentiated, and in this way we obtain
whole system can be simulated. In this case we have {Qasistactory results of the force with controlled error. In the
specify appropriate boundary conditions. We refer to thispy the depletion force can be calculated exactly if the
case asnexactsimulation. In theinexactsimulations, a por-  ontact density around the big sphere is known. However, in
tion of the system is defined in the following: periodic {he Monte Carlo simulation, the density profile can only be
boundary conditions are used in thendy directions with  ohiained through an extrapolation procedure. The density is a
periodL,y, and a plane hard wall and a curved hard wallfynction of the polar angl® only from symmetry. In practi-
with radius of curvatureR. are placed az=L, andz=0, ¢4 calculations we divide the space around the big sphere
respectively. The hard sphere fluid is confined in this simujntg shells of thicknesd. The density of small sphere fluid in
lation cell, and the big sphere is locatedzatR,+h. When  g5ch shell as a function afis obtained through the simula-
R tends to infinity, the curved wall tends to be a plane.tjon py simply collecting the number of times that a small
which corresponds to the wall-sphere model. The dlmen5|on§phere center enters the shell at the angle pos#idfrom

Ly andL, of the simulation cell are determined by the re- the jnformation collected in this way, we can obtain the av-
qguirement that the density profile close to the surface of th%rage densities of small sphere fluids in a shell around the
big sphere is not affected by the boundaries. From calculabig sphere of thickness, 2d, ..., etc. By evaluating the in-

tions with different values of,, andL,, we find thatlL,,  tegral (2) with these densities, we obtain the following
should be larger thanR,+16Rs, andL, should be larger  thickness-dependent forces:

than Ry, + 18R;.

For each given state of the cavity and the big sphere, the -
hard sphere fluid is sampled according to the Metropolis al- 'i:f d6p;(6)sin 6 cose. (20)
gorithm. Each sphere is randomly chosen and a trial dis- 0
placement is accepted if the move does not result in an over-
lap to the hard cavity, the big hard sphere or other smalllhe force can thus be obtained by extrapolatingo d=0
spheres, and rejected otherwise. The magnitude of the ratsing the spline method. Figure 2 gives a typical process of
dom displacement is adjusted so that the overall acceptandbis extrapolation where the force is plotted as a function of
ratio is about 0.5. We use typically>510° Monte Carlo steps  thickness. The extrapolation usually introduces errors.
(MCS) for equilibration of the systems and otheix20° In our system only one big hard sphere is present. We
MCS to collect data, and the statistical errors are controlledlefine the volume fraction of the single big hard sphere as
less than 1%. The depletion potential is calculated directlyy,=37R3/V. In the exact simulations, the ratiR./Rs
from the simulated data by E¢L9). The force calculationis =18, R,/Rs=5.70 so that the volume fractiony,
a little bit involved in these simulations, which is calculated =0.03175. Three different volume fractions of small
by two methods. The first one is with the use of the calcuspheres,=0.1, 7,=0.2 andn,=0.3 were used, the num-

0.02 0.04
di
FIG. 2. Extrapolation of the integrdl to contactd;=id=0.

Parameters ar®,=5.7R;, R.=18R;, h=0, with bulk volume
fraction »,=0.3. The filled point is the extrapolated contact value.
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FIG. 3. Depletion potential on a big sphere inside a cavity ob-
tained by the ARM. Parameters aRy=5.7R;, R.=18Rg, with
volume fractionsn,=0.1, »,=0.2, and »s=0.3, from bottom to
top, respectively. The errors are roughly the thickness of the lines.

ber of small spheres in the three cases being 565, 1129, and
1649, respectively. Both the acceptance ratio and the small
sphere densities around the big sphere are collected. The
space around the big sphere is partitioned into shells of
thicknessd=0.02R;, dividing into 180 parts along the polar . R
angled with equal intervals of). The density around the big 0 1 2 3
sphere is symmetric around tlzeaxis so that it is indepen- h
dent of ¢. The number of times that the center of small 40
spheres enter each ring characterizedi,bthe label of the
shell, andd are recorded. Since the ARM can only calculate
the difference of the depletion potential, we have to chose
the zero point of the depletion potential. In this calculation,
the depletion potential &= 0, where the big sphere contacts
with the wall of the cavity, is set to zero as reference. How-
ever, the choice of zero point of the depletion potential has
no effect on the depletion force because the force is obtained
from the differentiation of the potential. In Fig. 3 the deple-
tion potentialV in units of kgT is plotted as a function df
for three different volume fractions; it is clear that the larger
volume fraction gives larger depletion effects with more h
structures of the depletion potential. By differentiation of the
curves in Fig. 3 we obtain the depletion forces for the corre- FIG. 4. Scaled depletion forces! = f/(kgT/2R,), of the same
sponding three cases which are plotted in Fig. 4. The estisystem as those in Fig. 3. Opaque squares are the results from Eq.
mated error in this case is smaller than the size of the sym@), with the largest error indicated by the error bar. Filled circles
bols in the plot. We also plot in the same figure the depletioriconnected by the solid lineare those from the ARM, with error
force calculated from Eq3) by density integral and extrapo- less than the size of the symbol. Results of the AO approximation
lation. It is seen from the figure that the data from the densityare plotted by a dashed line for comparison.
integration method is scattered, with larger errors. The esti-
mated largest error in this case is indicated in the figure as an 28R, L,=30.5R;, andNg=1710 in the case where the
error bar. As a comparison, we further plot in the figure thefluid is outside the cavity. The radius of the big sphere in
results of the AO approximation given by E,), which is  both cases i®,=5.7R; and the volume fractions of the big
zero wherh>2R;. The results obtained by the two methods sphere in the two cases arg=0.03465 andy,=0.03147,
are consistent, while the AO approximation underestimatesespectively. The choice of the parameters corresponds to
the magnitude and the range of the depletion force, whichhose in Ref[5] for easy comparison. Figure 5 shows the
also lack of the oscillatory structure. depletion potential inside and outside of a hard spherical
In the inexact simulations we choodg,=28Rs, L,  cavity. The symbols are simulation results of this work ob-
=29.9R,, and the number of small hard sphefés=1548 tained with the ARM, with errors estimated less then the size
to maintain the volume fractioms=0.3 in the case where of the symbols. The result obtained by the DFT in RBf.is
the hard sphere mixtures are inside the hard cavity,lagd also plotted in the same figure as a solid line, and those of
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FIG. 6. Escape potential barriggAV, for a big sphere with
radiusR,=5R; inside of a spherical cavity of radiug. for three
values ofng. Symbols are simulation results, with errors estimated
less than or about the size of the symb@d, »,=0.3; [J, 7,
=0.2; ¢, ps=0.1). The lines are from the DFT calculatiofs®lid
line, »,=0.3; dotted line,n;=0.2; dashed linep,=0.3).

error is AVS™—AVIY/AVI'~7%, slightly smaller than
the first case.
. . . A comparison of simulation data and those of the DFT
0 1 2 3 obtained by Rothet al. [5] for different curvatures of the
h cavity is shown in Fig. 6. The simulation data fB/Rg

FIG. 5. Depletion potentiala) inside and(b) outside of the larger tha_n 20 are Ob_tained by .ineX?Ct Simu_lation_s; the vol-
spherical cavity with radiuR.;=40R, . The radius of the big sphere ume fraction of the big sphere in this case Is malntamed o
is R,=5.7R, the volume fraction iga) 7,=0.03465 andb) 7,  aPout 0.03. The data fd®./Rs smaller than 20 are obtained
=0.03147, respectively. The volume fraction of the small sphere igVith exact simulations; in this case the volume fraction of
7s=0.3. The symbols are obtained from simulations with the ARM, the big sphere is increased Rg is decreased. In the figure
solid lines are from the density functional theory in R&f, andthe  the escape barriers of three different systems, corresponding
dashed line corresponds to the Asakura-Oosawa approximation. THe three volume fractions of small-sphere fluids, are plotted.
errors of the simulation data are smaller than the size of the symiThe big sphere is inside the cavity, aRg=5R;. From the
bols. figure we see that wheR./R,>20, the differences between
the results of the escape potential barBecV, are less than

the AO approximation as a dashed line. From Figs) &nd 10%. At smaIIer_ ratios oR./Rg, the differences become
5(b) it can be seen that the result of the simulations and thosi"9€r as the ratio decreases. It should be noted that for the
of the DFT are in good agreement. In order to measure thE2dius R.=10Rs of the cavity and fixed big sphere radius
difference between the simulation results and those of th&=5Rs, 7, is as large as 0.125, which induces the differ-
DFT, we introduce a quantitsV,, called the escape poten- €NCe between the simulation and the DFT resylts to 45%.
tial barrier in Ref[5], defined as the difference between the _ [N summary, we have calculated the depletion force of a

maximum potential barrier and the depletion potential ati9 hard sphere inside a hard spherical cavity by the Monte
contact. The simulated value afV. is AVS™=9 83 and the arlo simulation with the ARM. The agreement of our re-
. . Sim—9g,

value of the DET is\ V9= 8.98 in the case of the big sphere SU/tS With those of the DFT confirms that the DFT method is
inside  th " € Th i lati i gA Eim effective and accurate in the calculating of the depletion po-
Insiae e caviy. e relative error is AV, tential, and it is essential to increase experimental resolution

dfty 7 A \/dft_ - _ : e .
—AVg)/AV ~9%. By definition, the result of the DFT jy orger to measure the depletion potential using the experi-
corresponds to the limif,— 0. However, in our simulation  antal method in the future.

the volume fraction of the big sphere is about 0.03, which

can be one of the causes of this discrepancy. In addition, the
DFT calculations are performed in the grand canonical en-
semble and the density of the small spheres is fixed by the
bulk chemical potential. This can introduce errors in the We are grateful to R. Roth for his helpful suggestion and
number density of small spheres of the system. This can bgroviding his DFT data for the depletion potential, which we

another cause of this discrepancy. The simulating value dhclude in Figs. 5 and 6. The work is supported by the Na-
AV, is AVEM=7.28 and that of the DFT idVa"=6.82 in  tional Nature Science Foundation of China and The Cheung
the case of the big sphere outside the cavity. The relativ&ong Scholars Program.
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