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Depletion potential near curved surfaces
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Institute of Theoretical Physics, Shanghai Jiao Tong University, Shanghai 200240, China

~Received 6 May 2002; revised manuscript received 6 June 2002; published 30 December 2002!

We examine the depletion potential and force of a hard-sphere fluid on a single big hard sphere, located
inside or outside of a hard spherical cavity, by Monte Carlo simulations to the hard-sphere fluid. The depletion
potential is determined by the acceptance ratio method, while the force on the big sphere is obtained by two
methods: numerical differentiation of the depletion potential and integration of the contact density of the fluid
at the surface of the big sphere. The results are in excellent agreement with those obtained by density func-
tional theory presented by Rothet al.
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I. INTRODUCTION

Depletion forces in colloidal suspensions and in polym
colloid systems are of long-standing and continuing inter
@1–16# in the last few decades. Asakura and Oosawa~AO!
@1# first described this depletion mechanism, suggesting
it would drive phase separation in colloid-polymer mixture
Using excluded volume arguments they calculated the de
tion force between two hard spheres of radiusRb in a fluid of
small hard spheres of radiusRs , and showed that the force i
attractive for all separations less than 2Rs and is zero for
larger separations. In the past years, a lot of experime
works were available on the subject by scattering meth
@6–8#. There were also direct methods used to determine
depletion potential between a colloidal hard sphere an
hard wall, between a hard sphere and a spherical sur
induced by smaller colloidal particles@9,10#, and by nonad-
sorbing polymers@8#. In particular, Dinsmoreet al. @10# have
employed video microscopy to probe the behavior of a
croscopic sphere trapped inside of a rigid, phospholi
vesicle. Theoretical investigations beyond the simple f
volume argument are density functional theory~DFT! calcu-
lations by Go¨tzelmannet al. @11#, the virial expansion by
Mao et al. @12#, and simulations@13,14#. Attard @2# has de-
rived an exact expression for the depletion force in terms
the equilibrium number density profile of the fluid from th
density functional theory. By using the exact force expr
sion Götzelmannet al. @11# have constructed a series of a
proximate expressions of the depletion force: the AO
proximation, the Derjaguin approximation, and the wed
approximation with increasing complexity and accuracy.
Ref. @4# a very accurate new approach based on the den
functional theory developed by Rosenfeld@3# for calculating
the depletion potential in a hard-sphere mixture is presen
by Götzelmannet al.They obtained some perfect theoretic
results of the depletion potential on a single big hard sph
inside or outside of a hard spherical cavity@5#.

Simulations of the depletion potential and force betwe
~1! a macrosphere and a hard wall, and~2! a pair of macro-
spheres for binary hard-sphere mixtures have was perfor
by Dickman @14#. We shall study here, by means of th
Monte Carlo simulation method together with the accepta
ratio method~ARM! introduced by Bennett@17#, the deple-
tion potential and force between a big hard sphere of rad
Rb and the spherical cavity in a system of hard-sphere flu
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The volume fraction of the fluid ishs @defined ashs

5N 4
3 pRs

3/(V24pRb
3/3), whereV is the total volume of the

simulating cell#. The radius of the spherical cavity isRc , and
the big hard sphere can be inside or outside of the cavity.
simulating directly the free energy differences of syste
with different separations between the big sphere and
spherical surface, we extract the depletion potential a
force. As a comparison, the depletion force is also calcula
by the use of the exact expression of@11#; we refer to this
method as the density integration method~DIM !. The ARM
does not need the knowledge of density profiles of the flu
while the calculation by using the exact expression, the D
do. As is well known, in a system that has a lack of symm
try, accurate determination of the density profile needs
generate a large number of configurations, which is very ti
consuming. We will see that the ARM is superior compar
to the DIM in the calculation of both the depletion potent
and the depletion force.

The paper is organized as follows. In Sec. II we derive
expression of the depletion potential and force of the sys
from the AO approximation. The implementation of th
ARM in this system is given in Sec. III. In Sec. IV we giv
the details of the Monte Carlo~MC! simulation, together
with results and discussions.

II. DEPLETION POTENTIAL AND FORCE
IN AO APPROXIMATION

The model system under research is a big hard spher
radiusRb in a fluid of small hard-sphere particles of radiu
Rs inside or outside of a rigid spherical cavity of radiusRc
@as shown in Fig. 1~a! and Fig. 1~b!#. The force on the big
sphere exerted by the fluid in the presence of rigid spher
cavity, the so-called depletion force, can be expressed as@11#

bf~h!52E
S
dAr~R!n̂, ~1!

whereb5(kBT)21. The integration is over the surfaceS of
a sphere of radiusRb1Rs spanned from the center of the b
sphere;n̂ is the unit normal vector pointing outwards from
the big sphere. The force depends on the distribution of
equilibrium contact number density of the fluid, which
fixed by the external potential due to the cavity and the
hard sphere itself. In the absence of the cavity or other
©2002 The American Physical Society07-1
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FIG. 1. Schematic drawing of the two kinds of systems studied in this paper. A fixed hard sphere with radiusRb , in a fluid of smaller
hard spheres with radiusRs , located~a! inside or~b! outside of a spherical cavity of radiusRc . Thez axis is the axis connecting the cente
of cavity and the big sphereh is the distance between the vesicle wall and the big sphere surface along thez axis.uc is the value of the polar
angle beyond which is the excluded volume~dotted areas! of small spheres. For reasons of clarity the schematic drawings correspo
Rb51.25Rs andRc55Rs .
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nce
stacles, this density profile is symmetric around the
sphere so that this force vanishes. The reduction of symm
by the presence of the rigid cavity gives rise to a nonz
force f z(h), wherez is along theh direction. However, the
system has rotational symmetry around thez axis, so that the
density profile has the same symmetry and Eq.~1! leads to
@14#

b f z~h!522p~Rb1Rs!
2E

0

p

du sinu cosur~u!, ~2!

whereu is the polar angle with respect to thez axis ~see Fig.
1!, andr~u! is the contact number density of the fluid on t
surface of the fixed big sphere. It is obvious that in this c
f x5 f y50. Equation~2! can be rewritten as@11#

b f z~h!522p~Rb1Rs!
2E

p/2

p

du sinu~2cosu!Dr~u!.

~3!

HereDr(u)5r(u)2r(p2u) is the difference between th
contact densities around the leftr~u! and the rightr(p2u)
hemisphere of the big sphere.

The AO approximation, proposed by Asakura and Oosa
@1#, assumes that the density profile takes the bulk valu
the part where the small spheres can be accommodated
is zero in the part where the small spheres cannot enter.
approximation is only justified for very low bulk densities
the fluid. Under this approximation, the depletion force c
be written as

b f AO
CS~h!522p~Rb1Rs!

2E
uc

p

du sinu~2cosu!Dr~u!,

~4!

whereuc is the value ofu when the small sphere just con
tacts with both the big sphere and the cavity surfa
Dr(u)52rs , and rs is the bulk number density of th
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small sphere fluid. According to simple geometries, the
sine value of the angleuc ~see Fig. 1! is

cosuc5
~Rb1Rs!

21~Rc2h2Rb!22~Rc2Rs!
2

2~Rb1Rs!~Rc2h2Rb!
~5!

for the case of the big sphere inside the cavity, and

cosuc52
~Rc1h1Rb!21~Rb1Rs!

22~Rc1Rs!
2

2~Rc1h1Rb!~Rb1Rs!
~6!

for the case of the big sphere outside the cavity. Inserting
~5! and Eq.~6! into Eq. ~4!, we have

b f AO
CS~h!522prsQ~2Rs2h!

3
~Rc2h/2!~Rc2Rs2Rb2h/2!

~Rc2Rb2h!2 3S Rb1
1

2
hD

3~2Rs2h! ~7!

and

b f AC
CS~h!522prsQ~2Rs2h!

3
~Rc1h/2!~Rc1Rs1Rb1h/2!

~Rc1Rb1h!2 3S Rb1
1

2
hD

3~2Rs2h!, ~8!

respectively, whereQ(r ) is the Heaviside step function. In
the limit of Rc→`, the depletion force, Eqs.~7! and ~8!,
becomes

b f AO
WS~h!522prsQ~2Rs2h!S Rb1

1

2
hD ~2Rs2h!,

~9!

which is the depletion force on the big sphere in the prese
of a planar hard wall located a distanceh apart.
7-2
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DEPLETION POTENTIAL NEAR CURVED SURFACES PHYSICAL REVIEW E66, 061407 ~2002!
By integrating the depletion force, the associated dep
tion potential on a big sphere inside and outside of a ca
~cavity sphere model! is, respectively,

bVAO
CS52

1

3
prsQ~2Rs2h!

3
~3Rb1Rs1h!Rc2~RbRs1Rsh1Rbh1h2/4!

Rc2h2Rb

3~2Rs2h!2 ~10!

and

bVAO
CS52

1

3
prsQ~2Rs2h!

3
~3Rb1Rs1h!Rc1~RbRs1Rsh1Rbh1h2/4!

Rc1h1Rb

3~2Rs2h!2. ~11!

Moreover, the potential for a big sphere and a hard pla
wall ~wall sphere model! is

bVAO
WS52

1

3
prsQ~2Rs2h!~2Rs2h!2~3Rb1Rs1h!.

~12!

The potential zero is set so far away at the place where
obstacles are separated that the hard-sphere fluid densit
tween them tends to bulk density for the wall sphere mod
and at the center of the cavity where the center of the
sphere is located for the cavity sphere model, respective

III. SIMULATION OF THE DEPLETION POTENTIAL

Consider two systems of hard-sphere fluid in an exter
potential characterized by a rigid cavity and a big ha
sphere inside or outside of the hard cavity, with differe
separations between the big hard sphere and the hard sp
cal cavity surface. Denoting the potential of the two syste
by V0 andV1 , the partition function of the systems beingQ0
and Q1 , then the free energy difference between these
systems is given by

bDF[bF12bF052 ln
Q1

Q0
. ~13!

By introducing a weight functionW(r ), we can transform
the ratio of partition functions of the two systems as@17#

Q1

Q0
5

Q1

Q0

E drW~r !exp@2b~V11V0!#

E drW~r !exp@2b~V11V0!#

5
^W exp~2bV1!&0

^W exp~2bV0!&1
, ~14!
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wherer represents the coordinates of all particles in the s
tem and the subscripts 0 and 1 denote an average with
spect to the Boltzmann factor ofV0 and V1 , respectively.
The weight functionW is arbitrary and may be chosen i
such a way that the calculation effort is reduced. Followi
@17#, we choose it as

W}FQ0

n0
exp~2bV1!1

Q1

n1
exp~2bV0!G21

, ~15!

wheren1 andn0 are two arbitrary numbers to be determin
later. Equation~14! then reduces to

Q1

Q0
5

n0Q1

n1Q0

K F11
Q1

Q0

n0

n1
exp@2b~V02V1!#G21L

0

K F11
Q0

Q1

n1

n0
exp@2b~V12V0!#G21L

1

.

~16!

By assuming (Q1 /n1)(n0 /Q0)5e2C, we obtain

Q1

Q0
5

^ f @b~V12V0!1C#&0

^ f ~2b~V12V0!2C!&1
eC, ~17!

ln
Q1

Q0
5 ln

^ f @b~V12V0!1C#&0

^ f @2b~V12V0!2C#&1
1C; ~18!

here f (x)5@11exp(x)#21 is the Fermi function. Sincen1
andn0 are arbitrary, this equation is valid for any constantC.
By choosing an appropriateC, the calculation ofDF can be
quite conveniently performed. For the hard sphere poten
we may chooseC50 and get

bDF52 ln
Q1

Q0
52 ln

^ f @b~V12V0!#&0

^ f @2b~V12V0!#&1
52 ln

N10

N01
,

~19!

whereN10 is the number of samples drawn out from theN
simulated samples, which are generated with the potentiaV0
whereV1 is not infinite;N01 is the number of samples draw
out fromN simulated samples, which are generated with p
tential V1 whereV0 is not infinite.

The procedure outlined above is used to calculate the
energy difference between two states of the system, the
states are regarded as two systems, 0 and 1, in the A
language, and characterized, respectively, by the separa
between the big sphere and the cavity surface,h0 andh1 . It
is clear that whenDh5uh12h0u is large, the numbersN10
and N01 can be very small compared toN, so that an ex-
tremely large number of configurations have to be genera
to reduce the statistical errors ofN10 andN01. On the other
hand, if Dh is very small, the two systems are nearly t
same and the free energy difference between them ca
very small, and therefore it is difficult to extract it from th
subtraction of the two logarithms ofN10 and N01. In our
study the value ofDh is chosen to assure that bothN01 and
7-3
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N10 are large anduN102N01u is not too small. The choice o
Dh depends on the volume fractionhs , which becomes
smaller whenhs is larger.

Apart from a constant which can be specified arbitrarily
this study, the depletion potentialV on the big hard sphere i
just the free energyF of the system. The depletion force o
the big sphere can be calculated by numerical differentia
of the depletion potential in the ARM.

IV. RESULTS AND DISCUSSION

Before presenting the results of our calculation, we fi
specify the system in more detail. The system is a fluid
unit-diameter (2Rs51) hard spheres, inside or outside of
hard spherical cavity with radiusRc , the centers of the
spheres are restricted inside of a sphere of radiusRc2Rs in
the first case, and outside of the sphere of radiusRc1Rs in
the second case. A single big hard sphere of radiusRb with
its center at a distanceRc2Rb2h or Rc1Rb1h is apart
from the cavity center~a distanceRb1h from the cavity
surface!, respectively, in the two cases. The force on the
sphere is a function of the radius ratiosRb /Rs , Rc /Rs and
the bulk volume fractionhs of the hard-sphere fluid. In the
case of the big sphere inside of the cavity, and the cavity
is not large, we did a simulation of the whole system. W
refer to this case asexact simulation hereafter. However
when the radius of the cavity is large enough or the
sphere is located outside of the cavity, only a portion of
whole system can be simulated. In this case we have
specify appropriate boundary conditions. We refer to t
case asinexactsimulation. In theinexactsimulations, a por-
tion of the system is defined in the following: period
boundary conditions are used in thex andy directions with
period Lxy , and a plane hard wall and a curved hard w
with radius of curvatureRc are placed atz5Lz and z50,
respectively. The hard sphere fluid is confined in this sim
lation cell, and the big sphere is located atz5Rb1h. When
Rc tends to infinity, the curved wall tends to be a plan
which corresponds to the wall-sphere model. The dimens
Lxy and Lz of the simulation cell are determined by the r
quirement that the density profile close to the surface of
big sphere is not affected by the boundaries. From calc
tions with different values ofLxy and Lz , we find thatLxy
should be larger than 2Rb116Rs , and Lz should be larger
than 2Rb118Rs .

For each given state of the cavity and the big sphere,
hard sphere fluid is sampled according to the Metropolis
gorithm. Each sphere is randomly chosen and a trial
placement is accepted if the move does not result in an o
lap to the hard cavity, the big hard sphere or other sm
spheres, and rejected otherwise. The magnitude of the
dom displacement is adjusted so that the overall accept
ratio is about 0.5. We use typically 53103 Monte Carlo steps
~MCS! for equilibration of the systems and other 23105

MCS to collect data, and the statistical errors are contro
less than 1%. The depletion potential is calculated dire
from the simulated data by Eq.~19!. The force calculation is
a little bit involved in these simulations, which is calculat
by two methods. The first one is with the use of the cal
06140
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lated potential, i.e., obtaining the force through numeri
differentiation as outlined in the preceding section. The s
ond is the DIM by using Eq.~3!. Both methods have thei
corresponding merits and disadvantages. In the differen
method, the calculated free energy from simulation conta
statistical errors, while the numerical differentiation alwa
has the effect of enlarging the errors. To improve our resu
the calculated data are first smoothed by the spline regres
method and then differentiated, and in this way we obt
satisfactory results of the force with controlled error. In t
DIM, the depletion force can be calculated exactly if t
contact density around the big sphere is known. However
the Monte Carlo simulation, the density profile can only
obtained through an extrapolation procedure. The density
function of the polar angleu only from symmetry. In practi-
cal calculations we divide the space around the big sph
into shells of thicknessd. The density of small sphere fluid in
each shell as a function ofu is obtained through the simula
tion by simply collecting the number of times that a sm
sphere center enters the shell at the angle positionu. From
the information collected in this way, we can obtain the a
erage densities of small sphere fluids in a shell around
big sphere of thicknessd, 2d,..., etc. By evaluating the in-
tegral ~2! with these densities, we obtain the followin
thickness-dependent forces:

I i5E
0

p

dur i~u!sinu cosu. ~20!

The force can thus be obtained by extrapolatingI i to d50
using the spline method. Figure 2 gives a typical process
this extrapolation where the force is plotted as a function
thickness. The extrapolation usually introduces errors.

In our system only one big hard sphere is present.
define the volume fraction of the single big hard sphere
hb5 4

3 pRb
3/V. In the exact simulations, the ratioRc /Rs

518, Rb /Rs55.70 so that the volume fractionhb
50.03175. Three different volume fractions of sma
spheres,hs50.1, hs50.2 andhs50.3 were used, the num

FIG. 2. Extrapolation of the integralI i to contactdi5 id50.
Parameters areRb55.7Rs , Rc518Rs , h50, with bulk volume
fraction hs50.3. The filled point is the extrapolated contact valu
7-4
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DEPLETION POTENTIAL NEAR CURVED SURFACES PHYSICAL REVIEW E66, 061407 ~2002!
ber of small spheres in the three cases being 565, 1129,
1649, respectively. Both the acceptance ratio and the s
sphere densities around the big sphere are collected.
space around the big sphere is partitioned into shells
thicknessd50.02Rs , dividing into 180 parts along the pola
angleu with equal intervals ofu. The density around the big
sphere is symmetric around thez axis so that it is indepen
dent of f. The number of times that the center of sm
spheres enter each ring characterized byi, the label of the
shell, andu are recorded. Since the ARM can only calcula
the difference of the depletion potential, we have to ch
the zero point of the depletion potential. In this calculatio
the depletion potential ath50, where the big sphere contac
with the wall of the cavity, is set to zero as reference. Ho
ever, the choice of zero point of the depletion potential h
no effect on the depletion force because the force is obta
from the differentiation of the potential. In Fig. 3 the depl
tion potentialV in units of kBT is plotted as a function ofh
for three different volume fractions; it is clear that the larg
volume fraction gives larger depletion effects with mo
structures of the depletion potential. By differentiation of t
curves in Fig. 3 we obtain the depletion forces for the cor
sponding three cases which are plotted in Fig. 4. The e
mated error in this case is smaller than the size of the s
bols in the plot. We also plot in the same figure the deplet
force calculated from Eq.~3! by density integral and extrapo
lation. It is seen from the figure that the data from the den
integration method is scattered, with larger errors. The e
mated largest error in this case is indicated in the figure a
error bar. As a comparison, we further plot in the figure
results of the AO approximation given by Eq.~7!, which is
zero whenh.2Rs . The results obtained by the two metho
are consistent, while the AO approximation underestima
the magnitude and the range of the depletion force, wh
also lack of the oscillatory structure.

In the inexact simulations we chooseLxy528Rs , Lz
529.5Rs , and the number of small hard spheresNs51548
to maintain the volume fractionhs50.3 in the case where
the hard sphere mixtures are inside the hard cavity, andLxy

FIG. 3. Depletion potential on a big sphere inside a cavity
tained by the ARM. Parameters areRb55.7Rs , Rc518Rs , with
volume fractionshs50.1, hs50.2, andhs50.3, from bottom to
top, respectively. The errors are roughly the thickness of the lin
06140
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528Rs , Lz530.5Rs , and Ns51710 in the case where th
fluid is outside the cavity. The radius of the big sphere
both cases isRb55.7Rs and the volume fractions of the bi
sphere in the two cases arehb50.03465 andhb50.03147,
respectively. The choice of the parameters correspond
those in Ref.@5# for easy comparison. Figure 5 shows th
depletion potential inside and outside of a hard spher
cavity. The symbols are simulation results of this work o
tained with the ARM, with errors estimated less then the s
of the symbols. The result obtained by the DFT in Ref.@5# is
also plotted in the same figure as a solid line, and those

-

s.

FIG. 4. Scaled depletion forces,f * 5 f /(kBT/2Rs), of the same
system as those in Fig. 3. Opaque squares are the results from
~3!, with the largest error indicated by the error bar. Filled circ
~connected by the solid line! are those from the ARM, with error
less than the size of the symbol. Results of the AO approxima
are plotted by a dashed line for comparison.
7-5
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the AO approximation as a dashed line. From Figs. 5~a! and
5~b! it can be seen that the result of the simulations and th
of the DFT are in good agreement. In order to measure
difference between the simulation results and those of
DFT, we introduce a quantityDVe , called the escape poten
tial barrier in Ref.@5#, defined as the difference between t
maximum potential barrier and the depletion potential
contact. The simulated value ofDVe is DVe

sim59.83 and the
value of the DFT isDVe

dft58.98 in the case of the big sphe
inside the cavity. The relative error is (DVe

sim

2DVe
dft)/DVe

dft'9%. By definition, the result of the DFT
corresponds to the limithb→0. However, in our simulation
the volume fraction of the big sphere is about 0.03, wh
can be one of the causes of this discrepancy. In addition,
DFT calculations are performed in the grand canonical
semble and the density of the small spheres is fixed by
bulk chemical potential. This can introduce errors in t
number density of small spheres of the system. This can
another cause of this discrepancy. The simulating value
DVe is DVe

sim57.28 and that of the DFT isDVe
dft56.82 in

the case of the big sphere outside the cavity. The rela

FIG. 5. Depletion potential~a! inside and~b! outside of the
spherical cavity with radiusRc540Rs . The radius of the big spher
is Rb55.7Rs , the volume fraction is~a! hb50.03465 and~b! hb

50.03147, respectively. The volume fraction of the small spher
hs50.3. The symbols are obtained from simulations with the AR
solid lines are from the density functional theory in Ref.@5#, and the
dashed line corresponds to the Asakura-Oosawa approximation
errors of the simulation data are smaller than the size of the s
bols.
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error is (DVe
sim2DVe

dft)/DVe
dft'7%, slightly smaller than

the first case.
A comparison of simulation data and those of the D

obtained by Rothet al. @5# for different curvatures of the
cavity is shown in Fig. 6. The simulation data forRc /Rs

larger than 20 are obtained by inexact simulations; the v
ume fraction of the big sphere in this case is maintained
about 0.03. The data forRc /Rs smaller than 20 are obtaine
with exact simulations; in this case the volume fraction
the big sphere is increased asRc is decreased. In the figur
the escape barriers of three different systems, correspon
to three volume fractions of small-sphere fluids, are plott
The big sphere is inside the cavity, andRb55Rs . From the
figure we see that whenRc /Rs.20, the differences betwee
the results of the escape potential barrierbDVe are less than
10%. At smaller ratios ofRc /Rs , the differences become
larger as the ratio decreases. It should be noted that for
radius Rc510Rs of the cavity and fixed big sphere radiu
Rb55Rs , hb is as large as 0.125, which induces the diffe
ence between the simulation and the DFT results to 45%

In summary, we have calculated the depletion force o
big hard sphere inside a hard spherical cavity by the Mo
Carlo simulation with the ARM. The agreement of our r
sults with those of the DFT confirms that the DFT method
effective and accurate in the calculating of the depletion
tential, and it is essential to increase experimental resolu
in order to measure the depletion potential using the exp
mental method in the future.
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FIG. 6. Escape potential barrierbDVe for a big sphere with
radiusRb55Rs inside of a spherical cavity of radiusRc for three
values ofhs . Symbols are simulation results, with errors estima
less than or about the size of the symbols~s, hs50.3; h, hs

50.2; L, hs50.1). The lines are from the DFT calculations~solid
line, hs50.3; dotted line,hs50.2; dashed line,hs50.3).
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